DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans.
نویسندگان
چکیده
Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need to be degraded rapidly after the first mitotic division for embryogenesis to proceed normally. We report here a distinct redundant function for OMA-1 and OMA-2 in the 1-cell embryo. Depletion of both oma-1 and oma-2 in embryos leads to embryonic lethality. We also show that OMA-1 protein is directly phosphorylated at T239 by the DYRK kinase MBK-2, and that phosphorylation at T239 is required both for OMA-1 function in the 1-cell embryo and its degradation after the first mitosis. OMA-1 phosphorylated at T239 is only detected within a short developmental window of 1-cell embryos, beginning soon after the proposed activation of MBK-2. Phosphorylation at T239 facilitates subsequent phosphorylation of OMA-1 by another kinase, GSK-3, at T339 in vitro. Phosphorylation at both T239 and T339 are essential for correctly-timed OMA-1 degradation in vivo. We propose that a series of precisely-timed phosphorylation events regulates both the activity and the timing of degradation for OMA proteins, thereby allowing restricted and distinct functions of OMA-1 and OMA-2 in the maturing oocyte and 1-cell embryo, ensuring a normal oocyte-to-embryo transition in C. elegans.
منابع مشابه
The Conserved Kinases CDK-1, GSK-3, KIN-19, and MBK-2 Promote OMA-1 Destruction to Regulate the Oocyte-to-Embryo Transition in C. elegans
BACKGROUND At the onset of embryogenesis, key developmental regulators called determinants are activated asymmetrically to specify the body axes and tissue layers. In C. elegans, this process is regulated in part by a conserved family of CCCH-type zinc finger proteins that specify the fates of early embryonic cells. The asymmetric localization of these and other determinants is regulated in ear...
متن کاملEmerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) constitute an evolutionarily conserved family of protein kinases with key roles in the control of cell proliferation and differentiation. Members of the DYRK family phosphorylate many substrates, including critical regulators of the cell cycle. A recent report revealed that human DYRK2 acts as a negative regulator of G1/S trans...
متن کاملA gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality.
In vertebrates, oocytes undergo maturation, arrest in metaphase II, and can then be fertilized by sperm. Fertilization initiates molecular events that lead to the activation of early embryonic development. In Caenorhabditis elegans, where no delay between oocyte maturation and fertilization is apparent, oocyte maturation and fertilization must be tightly coordinated. It is not clear what coordi...
متن کاملThe C. elegans DYRK Kinase MBK-2 Marks Oocyte Proteins for Degradation in Response to Meiotic Maturation
The oocyte-to-embryo transition transforms a differentiated germ cell into a totipotent zygote capable of somatic development. In C. elegans, several oocyte proteins, including the meiotic katanin subunit MEI-1 and the oocyte maturation protein OMA-1, must be degraded during this transition . Degradation of MEI-1 and OMA-1 requires the dual-specificity YAK-1-related (DYRK) kinase MBK-2 . Here, ...
متن کاملLIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans
An extended meiotic prophase is a hallmark of oogenesis. Hormonal signaling activates the CDK1/cyclin B kinase to promote oocyte meiotic maturation, which involves nuclear and cytoplasmic events. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation. Cytoplasmic maturation involves major changes in oocyte protein translation and cytoplas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 288 1 شماره
صفحات -
تاریخ انتشار 2005